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It is shown that the neutron polarization by electromagnetic scattering at small scattering angles near an 
5-wave resonance may be observable at larger angles than considered previously. The angle increase possible 
is most pronounced at the interference minimum of the total-cross-section curve below the resonance energy. 
The nuclear spin-orbit polarization is also considered, and it is shown that for small-angle scattering and low 
energy and an assumed typical interaction strength this polarization is much less than the polarization aris­
ing from the electromagnetic spin-orbit interaction. This conclusion may be modified if the spin-orbit inter­
action strength is larger than that assumed because of a possible resonance behavior in the spin-flip scatter­
ing. The resonance behavior is indicated by a phase-shift analysis of the scattering, which also leads to the 
plane-wave Born-approximation result (nonresonant) under special conditions. 

1. INTRODUCTION 

IT has been shown by Schwinger1 that fast neutrons 
scattered at small angles by nuclei can be polarized. 

The polarization arises from the interference between 
the nuclear scattering and the electromagnetic scatter­
ing. The angle of maximum polarization is nearly pro­
portional to the nuclear charge but even for heavy nuclei 
the angle is of the order of a degree for 1 MeV. The maxi­
mum polarization approaches zero, however, as the 
neutron momentum approaches zero. 

Margolis2 pointed out that the polarization could 
still be large even for low neutron energy if the scatter­
ing occurred at the peak of a Breit-Wigner s-wave 
resonance. However, the effect was shown by Margolis 
to be a small angle effect as before. In fact in this case 
the angle of maximum polarization decreases with the 
neutron momentum as well as with nuclear charge. 

The small-angle feature makes these polarization 
effects difficult to observe. The Schwinger-type effect 
was observed by Voss and Wilson3 using 100-MeV 
neutrons scattered by uranium. The Margolis-type 
effect apparently has not been observed. 

I t is the main purpose of this paper to point out that 
large polarization effects may be observable at larger 
angles if the scattering occurs near an s-wave resonance. 
The angle of maximum polarization may be increased 
significantly if the scattering occurs at an energy where 
the nuclear scattering is suppressed, i.e., at energies 
where the cross section has a small value. This situation 
frequently occurs at energies just below the resonance 
energy where the nuclear potential and resonance 
scattering interfere destructively. 

In addition to the electromagnetic spin-orbit inter­
action, neutrons experience a nuclear spin-orbit inter­
action which may change the features of the polariza­
tion in an experiment. Conditions where the nuclear 
and electromagnetic spin-orbit polarizations may be 
comparable are also considered here. 

1 J. Schwinger, Phys. Rev. 73, 407 (1948). 
J B. Margolis, Nucl. Phys. 22, 498 (1961). 
5 R. G. P. Voss and R. Wilson, Phil. Mag. 1, 175 (1956). 

2. ELECTROMAGNETIC NEUTRON SCATTERING 

A brief summary of the results obtained by Schwinger1 

and Margolis2 will serve to introduce the essential 
features of the problem. Following Schwinger1 the 
electromagnetic interaction HJ between the incident 
neutron and the scattering nucleus is given by 

He'=-ii(efi/2M2<?)a-1Exp, (1) 

where JJ,= —1.91 is the neutron magnetic dipole moment 
in nuclear magnetons; M, p, and cr are the neutron 
mass, momentum, and Pauli spin, respectively; and 
E is the nuclear electric field. Schwinger1 shows that 
the unscreened Coulomb field of a point-charge nucleus 
is a good approximation for scattering angles in the 
range 

l/ka<<2 sinj6K<l/&£, (2) 

where 6 is the scattering angle, a is the atomic screening 
radius, R is the nuclear radius, and k = p/h is the neutron 
wave number. Most cases of interest are for angles in 
this range. 

For an incident plane wave \p-inc 

fa (3) 

where ^k0 is the initial momentum and x is a spin 
function, the asymptotic scattered wave i^sc in the 
direction of k is given by 

'(e"'/r)f(6)x, (4) 

B l 

where f(6) is the scattering amplitude and k0-k=k2 cos#. 
Using the plane-wave Born approximation for the 
electromagnetic scattering Schwinger1 obtains 

f(0) = M0)-iy cot(i6)(vn), (5) 

where /o(0) is the nuclear scattering amplitude, 

k o xk=n& 2 s in0 , (6) 

n = — n (Schwinger1) in accord with current convention 
and 

y=-h(h/Mc)(Ze2/hc). (7) 

The polarization resulting from scattering an un-
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polarized incident wave is given by1 

2 Im/O(0)7 cot|0 
— n~ = P(0)n (8) 

|/o(0)|2+72cot2i0 

and the angle for maximum polarization 0O is given 
approximately by 

t an i0 o =7/ | /o (O) | (9) 

if /o(0) is well approximated by /o(0) for small angles. 
The polarization at the optimum angle 0O is then given 
by 

P (0o)=- Im/ o (0o ) / | / o (0o) | . (10) 

Thus complete polarization occurs when Re/o(0o) = O 
but Im /o(0o)^O. Schwinger1 gives the estimates 

t a n § 0 o = 7 / £ , kR<£\, 

= y/kR2, kR»l, 

P(60)=-kR, kR«l, 

= ~ 1 , kR»l. 

(11) 

(12) 

Since y/R= lAXlOr^ZA-w it is clear that do is small. 
Even for uranium do is less than two degrees. However, 
the polarization drops off not too rapidly at angles 
larger than the optimum. The polarization is half the 
maximum polarization at an angle of about four times 
the optimum angle. 

When the neutron scattering occurs near an s-wave 
resonance the s~wave nuclear scattering amplitude is 
given by4 

/o°= 
2k 

( iVn \ 
*>h ) 

\ E-EO+UTJ. 

(13) 

where Rf is the radius for potential scattering, Yn is 
the neutron resonance width, and T is the total reso­
nance width. 

Margolis2 pointed out that for £ P « 1 the scattering 
amplitude at the resonant energy is almost pure 
imaginary and gives complete polarization at the angle 
given by 

tanj0 o=7£- (14) 

Thus complete polarization can be obtained for kR<<Cl 
but the optimum angle decreases below that indicated 
b y E q . (11). 

Actually the condition kR<^l is more restrictive than 
necessary. If R e / 0 = 0 and I m / 0 ^ 0 then complete 
polarization occurs at the optimum angle given by 
Eq. (9). The real and imaginary parts of /0° from Eq. 
(13) are given by 

2k Refo°=-Z(x2-l+2p) siny 

+ (l-p)2x cosy]/(3*+1) , (15) 

2k i m / o ° = l + [ ( - « 2 + l - 2 p ) cosy 
+ (l-p)2x s in^ ] / (^ 2 +1) , (16) 

4 H. Feshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev. 
96, 448 (1954). 

with x=2(E-Eo)/T, y=2kR', and p = ( r - r n ) / r . If 
p = 0 then one obtains that Re/o°=0 when ta,ny=2x/ 
(1 — x2) or x=(—cosy zLl)/siny. In this case the opti­
cal theorem gives directly that k~l Imfo°= (Im/o0)2 

+ (Re/o0)2 and if Re/ 0 °=0 then Im/ 0°= 0 or Im/ 0 °=k~\ 
Thus, where constructive interference occurs (at 
resonance) one obtains 

*o+=(l-cos;y)/sin;y, Re / 0 °=0 , lmfo^k~\ (17) 

but where destructive interference occurs one obtains 

x<r= - (\-\-cosy)/smy, Re /o 0 - 0 , Im/ 0 °= 0 , (18) 

where the xo^ are the zeros of 2k Re/0° from Eq. (15). 
In this case the polarization by the optical theorem and 
Eq. (10) is given by P = - (k Im/0°)1/2. Hence at 
x=Xo+ one obtains P= — 1 while at x=xQ~ one obtains 
P = 0 when / 0 =/o° . 

On the other hand, if R e / 0 = 0 , l m / 0 > 0 and /o(0) 
~/o(0) then one obtains 

tanj0o=7/Ini/o(O), 

P ( 0 o ) - ~ 1 . 

(19) 

(20) 

If the effects of p > 0 , nearby resonances, or higher 
angular momentum scattering contribute a small 
amount to f0 then there will in general still be two 
values of x, x+, and x~, where Re/o—0 near the s-wave 
resonance energy E0. But now, in general, I m / 0 > 0 at 
both values. However, the value of Im/ 0 at x~ will 
usually be much smaller than its value at x+ (near 
resonance). The energy region near x~ then is interesting 
because by Eq. (19) larger angles for maximum polari­
zation are obtained there. If the angle do is small the 
following ratio follows from Eq. (19) and the optical 
theorem: 

0(T/0O 4 :(ay<T-)(kyk-): (21) 

where a is the total cross section and the + ( —) sign 
means evaluated at x+(x~). Thus, if a~<Ca+, the optimum 
angle 0~ may be increased considerably beyond the 
value of 0+ given by Eq. (14). 

The use of the optical theorem in Eq. (19) in the form 
a= (Air/k) lm/0(0) to obtain Eq. (21) may be questioned 
since only the nuclear spin-independent amplitude is 
used. However it may be noted, first, that the total 
cross section contains only a very small contribution 
from the electromagnetic scattering from a screened 
Coulomb potential1 and further the predominant part 
of this which occurs at small scattering angles is not 
included in the measurements of total cross section by 
the transmission method. On the other hand, the 
nuclear spin-orbit spin-flip contribution to the total 
cross section may or may not be small as discussed in 
the next section. Thus, Eq. (21) may be used only when 
this latter contribution to the total cross section is small. 
Of course when this is not the case, the whole preceding 
discussion must be modified to include the nuclear spin-
orbit interaction as also is discussed in the next section. 
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FIG. 1. The real and imaginary parts of kf0° as a function of 
energy near a "pure" s-wave resonance (p = 0) for kR = 0.5. 

To illustrate these points the curves for —k Re/0° 
and k Im/o° are shown in Fig. 1 for y = 1 and p= 0. The 
optimum angle for polarization do and its associated 
polarization P(0o) are shown in Fig. 2 as a function of x. 
If 0 < p « l the x0

± in Eqs. (17) and (18) may be re­
placed by x±/(l—p). However, the position where 
Im/o° has a minimum is still at xo~ at which 2k Im/0° 
= p(l~cos^) (this last result is valid for 0<p< 1). 

The effects which may be observable when /0 contains 
/o° plus a small contribution from l> 0 scattering can be 
seen in curves shown in Figs. 3 and 4 for y= 1.0 and 
p=0. In Fig. 3 the effect of adding 0.125 to k Re/0° 
is shown while in Fig. 4 the effect of subtracting 0.125 
from k Re/o° is shown. The latter case corresponds 
approximately to the p-wa,ve contribution based upon 
the hard-sphere approximation for kR=0.5. Thus it 
is seen from Figs. 3 and 4 that the neutron energy range 
where large polarizations and large optimum angles 
occur together is rather sensitive to the contribution 
from />0 scattering. 

These considerations suggest that the enhanced 
optimum angle for polarization may be observable in a 
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FIG* 2. The optimum angle for polarization do and the polari­
zation P(0o) as a function of energy near a "pure" s-wave reso­
nance (p = 0) for kR = Q.5. 

Neutron Energy Vorioble,x = 2 (E-E0)/T 

FIG. 3. The optimum angle for polarization do and the polari­
zation P(0O) as a function of energy near an s-wave resonance 
(p = 0) with 0.125 added to k Re/0° for kR = 0.5. 

suitable experiment if one is careful and/or fortunate in 
the selection of the resonance. As discussed some 
further at the end of the next section the nuclei in the 
mass range 40<^<70 appear to be interesting pos­
sibilities. A number of s-wave resonances are known5 

for some of these nuclei in the l-keV-300-keV range 
which have significant interference minima in their 
total cross-section curve. Thus if as suggested by the 
previous discussion the real part of /0 vanishes within 
the minima for some of these resonances, the enhance­
ment of the optimum angle should be observable. 

3. NUCLEAR SPIN-ORBIT INTERACTION 

Besides the electromagnetic spin-orbit interaction 
neutrons also experience an effective nuclear spin-orbit 
interaction when scattered by nuclei. It is therefore of 
some interest to compare these two interactions because 
they both influence the neutron polarization upon 
scattering. 
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FIG. 4. The optimum angle for polarization do and the polari­
zation P(0o) as a function of energy near an s-wave resonance 
(p = 0) with 0.125 subtracted from k Re/0° for kR = 0.5. 

5 H. W. Newson, E. G. Bilpuch, F. P. Karriker, L. W. Weston, 
J. R. Patterson, and C. D. Bowman, Ann. Phys. (N. Y.) 14, 365 
(1961). 
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The nuclear spin-orbit interaction Hn
f for a spherical 

nucleus is usually given in the form 

Hn'= VBO(R2/r) (d/dr)q(r)vl, (22) 

where the real part of the spin-independent nuclear 
potential V(r) is given by6 

R e 7 ( r ) = - Voq(r)= - V0{l+exp[(r-#)/a]}-i, 

with 1 the orbital angular momentum, "a" a diffuseness 
parameter, and F s o and Vo are strength parameters. The 
Vao used here might typically have a value of about 
0.3 MeV. 

For a square-well (a —> 0) Eq. (22) simplifies to 

Hn'=-VaoR5(r-R)<r.l, (23) 

where 5(x) is the Dirac delta function. This form will 
be used in what follows to make estimates with V(r) 
generally assumed to be a complex square-well potential. 

Using Eq. (23) a plane-wave Born approximation for 
the effect of Hn' gives7 

f(6) = iRa(k/Kyt(sinKR/KR)-cosKR'l sinftr-n, (24) 

where K=2ksin±d and a^2MVS0R
2/h2. For KR«1 

Eq. (24) gives 

f(6)= (iR/3)a(kR)2 sin0<r-n. (25) 

I t will be noted that the nuclear spin-orbit scattering 
amplitude as given by Eqs. (24) and (25) is imaginary 
like the electromagnetic amplitude but of opposite 
sign. Thus these effects interfere and using Eqs. (5) 
and (25) the two spin-orbit terms just cancel when 

- 3 / V h \*/Mc\( e\f Z\( 1 \ 2 

sin0 tani0= ) ( _ ) ( _ ) ( _ ) , (26) 
4 \RoMcJ \ VJ\hc/\A/\kR/ 

where R=R0A
lls. For kR<l this critical angle is 

greater than about 20 deg. Viewed differently, at 5 deg 
the electromagnetic scattering amplitude is larger than 
the nuclear spin-orbit amplitude by a factor of about 
16 {kR)~2. 

The use of the plane-wave Born approximation for 
the nuclear spin-orbit interaction may be questioned 
since a may be of the order of one. The Appendix gives 
a simple derivation of the exact phase shift expression 
for the nuclear spin-orbit interaction (delta function) in 
terms of the phase shifts without this interaction. The 
result obtained in the Appendix (keeping only ^-wave 
terms and assuming kR<Kl) for the spin-dependent 
amplitude is 

kf(0) = i(ei2h+~ei28ll sin&r-n (27) 

with 

tan5i±= tan5i° [ l -abi^kR)-* t a n ^ 0 ] " 1 , (28) 

6 P. A. Moldauer, Nucl. Phys. 47, 65 (1963). 
7 L. Wolfenstein, Ann. Rev. Nucl. Sci. 6, 43 (1956). 

where the phase shift for a = 0 is given by di°(rj = ei26)9 

a n d i i + = l , br=~2. 
Equation (28) implies a resonance for tan^r* if the 

bracketed quantity is zero. If the phase shifts are small 
and tan5i° is approximated by the hard-sphere value, 
~i(kRy, for &R«1, then Eqs. (27) and (28) lead to the 
plane-wave Born approximation result, Eq. (25), pro­
viding a « l . The real and imaginary parts of f(6) may 
be written from Eq. (27) as 

Re£/(0) = §(cos251+-cos2$r) sin0<r-n, (29) 

Imkf(d) = i(sm28^-sin2dr) sin0<r-n. (30) 

If a is not small compared to one but tan5i°= — ̂  (kR)3 

and kR«l then Eq. (28) gives 

tan5x+= - (kRy/(3+a), (31) 

t a n 5 r = - (kRy/(3-2a). (32) 

Thus near a=f, tan5f~ is near resonance and may have a 
value in the range — <*> < tan5f"< oo. If t a n 5 i ~ = ± l 
and tan5i+ « 0 then Eq. (30) gives k Im/(0) = ± | sintfo-• n 
and now the magnitudes of the electromagnetic and 
the nuclear spin-flip scattering amplitudes are compar­
able at an angle given by 

sin0tan§0=2ifeY (33) 

which for 0<<Cl gives 

0(deg) = 2.05[Z2£(MeV)]1/4. (34) 

Thus at lower energies if the nuclear spin-flip scattering 
has a ^>-wave resonance the polarization may be in­
fluenced by this resonance even at small angles. In 
addition to the resonance of the type just discussed for 
tan5i°=— l(kR.y and kR<Kl there will also be a reso­
nance in tanS^ near a resonance in tan§i° as can be seen 
from Eq. (28). The estimates given above serve to in­
dicate the possible importance of the nuclear spin-orbit 
polarization for small angle scattering at low energy. 
Resonances for l> 1 may also of course be important. 
Since 

dYi,Q/d cos0-> [47r / (2 /+ l ) ] 1 / 2 i / ( /+ l ) , 

whereas 

F * , o ^ [ V ( 2 / + l ) ] 1 / 2 , 
0->O 

then for small angles (nonzero) the relative importance 
of the larger angular momentum terms is greater for the 
spin-flip scattering than for the spin-constant scattering. 

Equation (28) can also be considered in terms of the 
complex square-well expression for tan5i°. In this case 
for kR<^l one obtains8 

t a n 5 i ° = - K ^ ) 3 ( £ - l ) / ( £ + 2 ) (35) 

8 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com­
pany, Inc., New York, 1955), 2nd ed., Chap. 5, p. 112. 

file:///RoMcJ
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with 

B=-2+pj0(/J)/Ji(P), (36) 
where 

/32=2MV0R
2/h2 (37) 

which is complex since VQ is complex. In this case the 
resonances for tanSi0 given by Eq. (35) are the well-
known resonances in the p-w&ve strength function 
curve6 while the resonances given by Eq. (28) give in 
principle the well-known splitting of the ^-wave 
strength function resonances due to the nuclear spin-
orbit interaction. 

4. CONCLUSIONS 

It has been shown that the small-angle electro­
magnetic scattering of neutrons near an s-wave reso­
nance can lead to large polarizations at larger angles 
than those considered previously. This increase of the 
optimum angle for polarization arises because nuclear 
scattering is suppressed near the interference minimum 
of the resonance. The larger angles attainable are of 
course of some experimental interest. 

The nuclear spin-orbit interaction has also been 
considered. I t has been shown that for typical estimates 
of the interaction the nuclear spin-orbit polarization is 
small compared to the electromagnetic polarization at 
small scattering angles and low energy. However, be­
cause of a resonance behavior at somewhat larger values 
for the nuclear spin-orbit interaction the resulting 
polarization is rather sensitive to the interaction 
strength. The plane-wave Born approximation does not 
lead to this resonant behavior but a more detailed phase-
shift analysis does and also leads to the plane-wave 
Born approximation under special conditions. 

The nuclei in the mass range 40<^4<70 would 
appear to be good candidates for experiments to mea­
sure the polarization effects associated with Eq. (21). 
Not only are these nuclei in a minimum of the ^-wave 
strength function curve but they also have well known 
resolved s-wave resonance structure5 with significant 
interference minima. However, in an experiment one 
may be faced with the problem of minimizing the 
nuclear spin-orbit effects but not to such an extent 
that the / > 0 scattering is negligible since a small con­
tribution may be desirable as shown in Figs. 3 and 4. 

There is a maximum6 in the s-wave strength function 
at about A = 50 and a minimum in the ^-wave strength 
function at about A = 57. In the range 40< A < 50 tan5i° 
has essentially the hard-sphere value. As A goes from 
50 to 57 tan5i° essentially approaches zero. As A goes 
from 57 to 70 tan5i° becomes increasingly more positive. 
These qualitative considerations serve as a rough guide 
to the importance of the p-wa,ve scattering in the range 
4 0 < U < 7 0 . 

Experiments9 may show the enhancement of the 

9 The Van de Graaff group at Ohio State University is co­
operating with a Battelle group in an attempt to measure these 
polarization effects associated with resolved s-wave resonances. 

optimum angle for polarization. For example, the 
asymmetry can be measured when a partially polarized 
beam is scattered near resonance from a nucleus having 
the required resonance structure. Of course in such 
experiments the polarization effects under discussion 
may be smeared out by the energy spread of the incident 
neutron beam and the angular spread of the scattered 
neutrons. Hence good resolution in these experimental 
quantities is required. 
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APPENDIX 

This Appendix gives a brief derivation of the exact 
phase-shift result for the additional scattering due to 
the nuclear spin-orbit interaction of the form given by 
Eq. (23). The scattering amplitude f(6) for a spin-orbit 
interaction between a spin-zero nucleus and a neutron 
is well known10: 

*/(0) = E il+1e-il*i2l(2l+l)irjl2 

i 

m+—m~ dYitQ -I 
— i sin# (T-ii , (Al) 

2 /+1 dcosO J 

where rji+(vi~) is the scattering coefficient for j=l 
+i(j=l— J) waves, j is the total angular momentum 
quantum number, and Y\>m is the spherical harmonic 
function. This result is quite easily derived using 
angular momentum theory and it may be of interest to 
present this simple derivation. 

For convenience assume the z axis for quantization to 
be directed along the incident plane-wave momentum 
vector fik. If the incident neutrons have spin projection 
of m along the z axis the scattered wave ^ s c has the 
form11 

fcow= - E ill(2l+\)7cJ*hi<U{kr) 
i 

x [ C ( / , | , / + i ; o»M»)(i-i7i+)«y V / 2 , * 

+CQ,i-,l-i;0mm)(l-71r)yl
l-i/2,m], 

r>R, (A2) 

10 J. Lepore, Phys. Rev. 79, 137 (1950). 
11 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics 

(John Wiley & Sons, Inc., New York, 1952), Chap. 10, pp. 
426-429. 
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where ht
(1) is the spherical Hankel function,8 

'JJ/m^E C(l%j\vvm)YiJCll29, (A3) 
V 

where FzM is the spherical harmonic function, X1/2v is a 
spin function io-2X1/2v=z/X1/2j,, and the Cs are Clebsch-
Gordan coefficients in Rose's12 notation. 

Asymptotically for large r Eq. (A2) using Eq. (A3) 
gives 

&cm -> (eikr/r)Z <Pmv*i/2V, (A4) 

where 

Pm^fc-1 E il+le-il^\_{2l+\)irjl2 

i 

X[(l-i7i+)C(/,i , /+i;0»w») 

XC(/, £,/+£,#»-*>, y,w) 

+ (l-i?r)C(/,i , /-i;Ofwi») 

XC(/, i / - | ; w-y , *>, m)~]Yi>m.v. (A5) 

Since w = ± § and z>=ztj it is straightforward to show 
that this expression is equivalent to the matrix 

/ 7+1 
p= jfcr-i Z il+1e-il^2Z(2l+l)TjH l-r?*+ 

i \ 21+1 

~vr c r l )Y 1 I 0 . (A6) 
21+1 21+1 ) 

Since lYito=i sind(dYit0/d cos#)n it is easily shown 
that the result given by Eq. (Al) follows. 

The preceding expressions can now be used to derive 
an exact result for the effect of the spin-orbit interaction 
of the form given by Eq. (23); i.e., the total potential 

12 M. E. Rose, Elementary Theory of Angular Momentum 
(John Wiley & Sons, Inc., New York, 1957), Chap. 3, p. 33. 
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is given by 

V(r)=Vo(r)~-V80Rd(r-R)<,-l, (A7) 

7 o ( r ) = - 7 0 , r<R, 

= 0, r>R. (A8) 

The total wave function for r>R and for jz\p
m=m\f/m 

is given by 

tm=Z ill(2l+l)Tji*{C(l, \, l+i; 0mm) 
i 

XZhi*Kkr)+m+hiM(kr)lyl
w/2tn 

+C(/,i,/-i;0wi») 
XLhi^(kr)+m^hi^(kr)2yli-i/2tn}. (A9) 

The wave function for F so=0, \p0
m, can be represented 

by letting r}i+=rjr=7]i0 in Eq. (A9). Applying the 
Wronskian theorem13 then yields 

2i(Vl±-m»)=(kR)abi± 
X[hl^{kR)+m%l^{kR)~] 

Xlhl^(kR)+m^hl^(kRn (A10) 

where ij+=Z, br= ~ (/+1), and a=2MVBOR2/h\ Thus, 
Eq. (A10) gives the rjj^ in terms of the rji°. 

Equation (A 10) is more conveniently expressed in 
terms of phase shifts di, i.e., rn=ei2dl. Thus 

ji (kR) - tanSz%z (kR) = £ji (kR) - tanSz% (kR)] 
X{l-a(kR)bfrn(kR) 
X lJi{kR) - t a n ^ V M ) ] } - 1 , (All) 

where the ji and rii are spherical Bessel functions.14 

For M « l , Eq. (All) reduces to 

tan5z
±=tan5z° 

X { l -dbp[(2l-1)! QKkR)-21-1 tan^0}-1 (A12) 

which gives a resonance if the bracketed quantity is 
zero. 

13 A. Messiah, Quantum Mechanics (Interscience Publishers Inc., 
New York, 1961), Vol. I, Chap. 10, p. 404. 

14 See Ref. 8, Chap. 4, p. 79. 


